Линейная скорость при движении по окружности

Эту скорость называют линейной. Сначала определим угловое ускорение тела . При движении тела вектор угловой скорости изменяется и по величине, и по направлению.

Если материальная точка M движется по окружности, то рассматривается угловая скорость и линейная скорость. Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным, оно является равноускоренным.

Период вращения T — это время, за которое тело совершает один оборот. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости. Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна vA и vB соответственно. В системе отсчета, связанной с колесом, точка равномерно вращается по окружности радиуса R со скоростью , которая изменяется только по направлению. Перемещение при прямолинейном равномерном движении. Линейная скорость тела, равномерно движущегося по окружности.

Линейная скорость при движении по окружности

  • Определения
  • Формулы
  • Конспекты

Углова́я ско́рость — векторная величина, являющаяся псевдовектором (аксиальным вектором) и характеризующая скорость вращения материальной точки вокруг центра вращения. Угловая скорость является аксиальным вектором (псевдовектором). Какова частота вращения колеса и период вращения? 5. Велосипедист движется со скоростью 36 км/час.

Вращательное движение твердого тела. Угловая и линейная скорости вращения

Равномерное движение по окружности интересно тем, что скорость движущейся точки остается постоянной по величине, изменяясь при этом по направлению. Скорость изменения угла вектора скорости относительно оси координат постоянна. То же самое можно сказать относительно радиуса-вектора, проведенного из оси вращения к вращающейся точке. Эта скорость называется угловой скоростью.

Также интересно: